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EXECUTIVE SUMMARY

This Technical Memorandum was prepared

originally as part of the Generic Fix Report (FY-86)
which was elmininated under the FY-87 statement of

work (SOW #2), undated (delivered to JPL 19 November

19B6).

The purpose of the Generic Fix Report, of which

this paper was to be an appendix, was to collect all
the material needed to understand Direction Finding

and Fix Estimation and their mathematical basis in

one volume to support the multi-volume series of Fix

• Estimation Reports.

This paper is being published because it was

compeleted in FY-86 with FY-86 funds and was being

held for integration into the Generic Fix Report.
It will be of value to readers desiring to persue
the mathematics involved in the Fix Estimation Reports.

v
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Fundamentals of Linear Estimation

0. Introduction

This memo_..-t-r-e4_-a selection of topics in linear
estimation, beginning with a very simple situation and progressing
through more complications.- These topics are shown in A. below. This

progression will provide the main structure for the document. Topics
from B. and C. below will be brought in at points where their need has
been motivated.

A more conventional academic approach to covering this material

would be to discuss B. and C. first, to establish the foundation, and
then treat A. This approach would be easier to do but would lack

motivation in the early stages. We are trying the stated approach on

the assumption that the sponsor wants a more motivated presentation.

%

_- :>A_ Topics in estimatlonl

• l'J One dimensional estimation-with one observation)
2_ Same with two observationsj

3] With same or different observational errors_
4_, Any number of observations,

5_, Two dimensional estimation _, independent errorsj
61 Multidimensional estimationj ,

73 Combining sets of observations)>
,

B1 Properties of random distributions'. 'i_

\

I; Mean, first moment 2

2_ Standard deviation, variance, second moment 2 2.3'_ Distribution, frequency function, all moments

Normal distribution2
Chi squared distribution.)
Student 0

s t dlstribution_
F distribution.

./

• 4") Confidence intervals :

I C_ Least squares /,

I_ Statement, geometric interpretation#' -

Gradient of the sum of squares)
• 2_ Solution methods ,/'--

i _ 0rthogonal transformatlons_ _,_L ....

3, Using the covarlance matrix of observation errors. <_'_'-"_/''_" "_'!_T_L_"_

The general style of the paper is tutorial, however due to the _i
amount of material being covered, and to avoid reaching book-length, it

• will be more of a sketch of a tutorial rather than a true tutorial in

i some places. /' l
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Equations will be numbered within sections. For example, if there

is an Equation (2) in Section 4.1, it will be referenced as Eq.(2) from

within Section 4.1 and as Eq. 4.1.(2) from any other section.

1. One dimensional estimation

i.I. A single observation

Suppose one makes a one dimensional observation, such as the

distance between two stakes at a construction site. Suppose the

measured distance is 95.36 meters, with an uncertainty of 2 centi-
meters.

For the moment we shall not define this concept of uncertainty too

precisely. One way to think of measurement uncertainty is in terms of
how surprised we would be at different possible outcomes if we could

somehow later letermine the distance much more accurately. We would be
surprised if our error turned out to be 3 cm., and very surprised if it

was 4 cm., and n_t at all surprised if it was Just 1 cm. If the error

turned out to be greater than about 6 cm. we would probably check to
see if there was a blunder in the first measurement or if the stakes

• had moved.

1.2. Two observations

Suppose we make a second observation of this same distance and

obtain 95.37 meters, again with an uncertainty of 2 cm. What is our
best estimate of the true distance?

If we use the principle of least squares, which we will not

Justify at this point, we seek a number, x, such that the sum of

squares of residuals between x and the observed values is minimized.

Thus denoting the measurements by bI - 95.36 and b2 - 95.37, we seek x
to minimize

s - (x - bi)2 + (x - b2)2

We may differentiate s with respect to x, obtaining

ds/dx - 2(x - b: + x - bz)

which will have the value zero when

x - (b, + b2)/2

i.e., when x is the average or mean of b, and bz. Thus our estimate of
@ the distance being measured is 95.365 meters.

_ What estimate of uncertainty do we attach to this result? To
answer this we shall need to adopt a mathematical model of uncertainty,
but before doing this we shall introduce one more example.
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1.3. Two observations with differing precision

Suppose we have the first observation as before but the make a

second observation of this same distance using a more precise measuring
device, obtaining a distance of 95.372 meters, with an uncertainty of
0.2 cm. Now _he simple average of the two measurements no longer seems
like a reasonable estimate. We should somehow give more weight to the
more accurate measurement.

A reasonable way to do this is to scale the residuals for the two

measurements so that equal values of the scaled residuals correspond to
equal levels of surprise. Specifically, instead of the simple re_4d-
uals, (x - b 1) and (x - b2), we will use the scaled residuals, ".,-

bl)/d 1 and (x - bz)/dz, where d_ denotes the uncertainty in t}, _

measurement b I. Thus, for example, if (x - bl)/d 1 has the val_ _ ".3,
this engenders the same level of surprise as would be associat 4 with
(x - b2)/d z having the value 1.2.

The combined error function we shall now seek to minimize is

s - [(X - bl)/dl] z + [(x - bz)/dz] z

• Differentiating with respect to x we obtain

ds/dx - 2[(x - bl)/d 1 + (x - bz)/dz]

which will have the value zero when

x - (bl/dI + b2/d2) / (i/dI + i/d2)

Using the values, bI - 95.36, dI - 0.02, b2 - 95.372, and d2 -
0.002, we obtain the estimate, x - 95.3709. Note that with this

estimate the simple residuals are

x - bI - 0.0109
and

x - bz - -0.00109

whereas the scaled residuals have equal magnitudes of

• l(x - b_)/dI] = l(x- bz)/dzl -0.545

Looking on to larger problems, we remark that although least

squares estimation has a tendency to balance the magnitudes of scaled
residuals, the actual data and dimensionality of a problem limits how

closely this balance can be approached, and in general one can not hope

for exact balancing as was attained in this example.

Now we must develop a mathematical model for uncertainties.

2. Characterising random distributions

Consider again our first example in which we assumed the uncer-

tainty of the measurement was 2 cm. Suppose we repeat this measurement
1000 times and count the number of times the difference from our

3

H ......
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original measurement falls in selected ranges, such as (-®, -4 cm.),

(-4, -2), (-2, 0), (0, 2), (2, 4), and (4, m). If we repeated this

measurement another I000 times we would expect some stability in the

percentage of measurement differences falling in each one of our bins.

For example we would expect the percentage of measurement differences

falllng in (0, 2 cm.) would hover around some fixed value, say 341.

A mathematical model that is useful in analyzing this type of

behavior is the assumption that there is a nonnegatlve continuous

function, f, defined for all real numbers, and related to our experi-

ment by the condition that the area under the graph of f bet_een any
two points a and b gives the value to which this type of repeated
experimenting and counting converges. Thus, such a function, f,
relating to our experiment would need to have area between 0 and 2 of
0.34.

The usual statistical terminology is to call a function, f, a

freouencv funct_oq or a probability deqsitv func_ if _t is nonnega-
tire and its integral from -_ to +_ exists and has the value I. We

will only be concerned with frequency functions that are continuous, or

at most have jump discontinuities at a finite number of points.

The indefinite integral of a frequency function is called a

distribution functlpD. Thus from a frequency function, f, we obtain a
distribution function, F, defined by

F(t) - i_ f(s) ds

A distribution function is defined for all real numbers, is

continuous and monotone nondecreasing. It approaches the limiting
value of 0 as its argument approache_ -®, and 1 as its argument ap-
proaches +_.

The term, random variable, is commonly used to refer to a quanti-

ty, such as the measurement error in our example, that typically has a

different unpredictable value each time it is observed, but yet
exhibits some regularity with _egard to the distribution of its values

in a large number of observations. Note that we are not actually
giving a definition of the term, random variable.

D The closest we can come to giving a mathematical definition of the

term, random variable, is to say that the statement, "x is a random

variable with probability density function f" means that certain

stylized statements involving "x" are to be taken as meaning something
specific •bout "f". As an example of such a st•tement, note th•t "the

probability that x exceeds 2 is 0.62", which may also be expressed •s

"P(x > 2) - 0.02", means "the integral of f from 2 to +m is 2._#T _s

It is often convenient to use the term, _, •s •

linguistic aid in associating the name of a random variable with the

name of its frequency function. For example we may at some point let D
denote a random distribution with frequency function, f, and later may

that _ is a sample from D.

4

J
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In practice one almost never has enough information to determine a
frequency function from empirical data. Various assumptions are
typically made to fill this gap.

For some purposes it suffices Just to assume that there is some
frequency function underlying the random aspects of a problem and
compute estimates of certain attributes of the distribution, most
commonly the mean, which is a measure of the central location of ths
distribution, and the standard deviation, which is a measure of the
dispersion of the distribution.

When one wishes to go further and make statements involving
probabilities, it becomes necessary to base the analysis on some
specific frequency function. There are a nr_ber of frequency functions
that have been thoroughly studied by statisticians, so in practice one
_sually picks one of these well known functions that has a plausible
shape for the problem.

The mean of a distribution with frequency function, f, is defined
by

p - ._ s f(s) ds

while the standard deviation, o, is defined by

o2_ I_®(s - _)2 f(s) ds

_he squared quantity, oz, is called the variance of the distri-
bution.

It is useful to have notations for these concepts for use with the
"random variable" terminology. Thus the mean value o f a random

variable, x, _s also called the expected valve of x, denoted by E(x).
This notation is extended to apply to arbitrary functions of a random
variable. Thus if g(x) is any function of a random variable, x, and
the following integral exists, we may write

E(g(x)) - _g(s) f(s) ds

The expected value operator is a linear operator, in the sense

that for arbitrary scalars, a and _, and functions, g and h, for _hich
the required integrals exist, we have

ECa g(x) + p h(x)) - a E(g(x)) + $ E(h(x))
Using the expected value notation the definition of the standard

deviation, o, can be written as

_2. E( (_ - Z(x))2 )

5

I .............................
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It is useful to introduce another operator, Vat(x), to capture
this last expression. Thus we define

Var(x)- E( _ - E(x))2 )

The value of the Var operator is insensitive to an additive shift

of the underlying distribution and varies with the square of a multi-

plicative factor. Thus

Var(ax + _) - Var(ax) - _2 Vat(x)

3. Examples of the use of the mean and standard deviation

3.1. Example assuming o is known

Returning to the example of Sec. 1.2., let us model the uncer-

tainty in the measurement process by assuming the observed values bI

and b2 are independent random _amples from some distribution with
frequency function, f, having mean, _, and standard deviation, o. We

assume that f and _ are not known, but we make the rather strong

assumption that o is known to have the value 2 cm. Our goal is to
estimate # and obtain an estimate of the standard deviation of the
estimated value.

The estimation function used in Sec. 1.2. was the simple average

g(bl,b2) - (bI + b2)/2

It will be instructive to consider a slightly more general

estimator function, namely

h(bl,b2) - abx + _b2

and then show that the choice of a = _ - 1/2 has certain desirable

properties.

Regarding b I and b2 as independent random samples from our assumed
distribution, the function h defines a new random variable having a
different distribution. What are the mean and standard deviation of

Q this derived distribution? What we hope, if h is to be of reasonable

use as an estimator, is that the mean of h is _, or has a known

functional relationship to _, and the standard deviation of h is less

than o, so we are estimating the quantity cf interest, _, and with

dispersion less than that of a single observation.

We must generalize the definitions given previously for the

operators E() and Var(), because h depends on two random variables.

................... .......................................................
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We compute the mean of h as

E(h(bl,b2)) - ff (ab, + _b2) f(b I) f(bz) dbI dbz

- af bI f(bI) db I f f(b2) db2

+ _ f(bl) dbI _ bz f(b2) db2

- =_ + _ - (=+ _)_

and the variance of h as

Var(h(b,,b2)) - E{[h - E(h)] _}

- E{[ab I + _bz -(a + _)912}

- Z{[a(b x _) + _(bz . _)]z}

- aZE[(bx-#) 2] + _2E[(b2-_) 2] + 2a_E[(b1-p)(b2-_) ]

- a2Var(bl) + _2Var(b2)

+ 2a_II (bx-.)(bz-p) f(bl) f(b2) dbI db2

- (a2+ _z)o:

+ 2a_ (b1-#) f(bl) dbI _ (b2-#) f(b2) db2

- (az + _2)o2+ 0 - (az + _2)a=

For the simple average estimator, g, where a - _ - i/2, these

formulas give a mean value of _ and a standard deviation of o/2 I/2 or
1.4 cm.

What about other valu_.s of a and _? An estimator is called

unbiased if its mean value is equal to the quantity we wish to esti-
mate, in thls case, #. To achieve this we see that we must have

a+_-l.

• An estimator is called minimum varla_e within its class if no

_i" other estimator in its class has smaller variance. The minimum value

of the factor (az + _2), subject to _ + _ - I, is attained when
a - _ - 1/2.

Any estimator of the form ab I + Sb 2 is called a linear estimator.
From the above we see that such an estimator is an unbiased linear

estimator if o + _ - I, and it is the minimum variance unbiased linear

estimator if a - _ - I/2.

Remark: The term, E[(b I - _)(b 2 - _)], in the above equation for

Var(h(bl,b2)) is called the _ of 51 and 52, and is denoted by

Cov(bl.b2._.. This is a very special case of the covarlance since the

Joint frequency function of bI and b2, here, f(bl)f(b2) , is th¢_product
of two functions, each depending on only one of the variables. In such

a case the covariance is zero because it can be written as the product

7
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of two integrals, each of which i_ zero. We postpone discussion of
covarlance in more general situations until matrix notation has been
introduced.

3.2. Example assuming o is unknown

Commonly one does not know o aprlor£, as was assumed in Sec. 3.1.,
but rather needs to estimate it from the data. Such an estimate can be

obtained from the sum of squares of residuals.

Define the residuals for the two measurements by

r, - bi - g(b 1,b2), i - 1,2

and define

S 2 . rl 2 + r2 2

Each residual is a function of the random variables, bI and b2,
and thus so is S2. Therefore S2 is a derived random variable having

its own distribution. The mean value of S2 may be determined as
follows :

E(S 2) - E(ri 2 + r2 2}

-- E( [b 1 (b:+b2)/2] z + [b 2 - (bl+b2)/2] 2}

- 1/2 E([b I - b2]z}

- 1/2 E{[(b I - _) (b2 _)]2}

- 1/2 (Var(bl) + Vat(b2) 2 Cov(bl,b2)}

- 1/2 {o2 + o2 + 0} - a2

Thus S2 is an unbiased estimator for o2. In our example we have

S2 - (-0.5 cm)2 + (0.5 cm) 2 - 0.5 cmz

from which we obtain (0.5)I/2 - 0.71 cm as an estimate of o.

In the more general case of m observations and i:parameters being
estimated the expected value of S2 is (m-n)o2. Thus S2/(m-n) is an

unbiased estimator for 02 . In our example we obtained E(S 2) - o2
because we have m - 2 and n - i. The difference, (m-n), is called the

number of degrees of freedom in the problem.

To estimate the dispersion of S2 requires more information or more

assumptions. The usual approach is to assume the distribution from

which the data values, bt, arise is a normal distribution. Then the
scaled derived random variable $2/o2 will have a _ distribution with

m-n degrees of freedom. The normal distribution and _ distribution
will be defined in Sec. 5.
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Discussion along the above lines could be carried out for the case

of Sec. 1.3 in which the observations were made with differing precis-
ions. We will not do this however because it will be much more effic-

ient to introduce matrix notation and treat the general problem of the

linear estimation of n parameters using m observations subject to an

aprlor covarlance matrix on the errors of the observations.

4. The multidimensional linear estimation problem

4.1. Notation and concepts of llnear algebra

The anticipated applications of this paper all involve real
numbers and thus we shall limit our discussion to this context. One

should be aware, however, that the concepts presented have identical or

very similar analogues in complex n-space. For f_rther details on

anything introduced in this section see [Golub and Van Loan] or [Lawson

and Hanson].

We shall use Rn to denote n-dimenslonal real space. A point in

Rn is an n-dimensional real vector, and will be denoted by a lower case

roman or greek letter, e.g. x, with real components, x I..... x_. An
mxn matrix is an array of m rows and n columns of real numbers, and

will be denoted by an upper case roman or greek letter, e.g.B. The

transpose of a matrix, B, will be denoted by Bt.

A transformation between two vector spaces will be called a linear

transformat$on if it involves Just a matrix multiplication, and an

afflne transformation if it consists of a matrix multiplication plus an
additive constant vector.

The number of linearly independent rows of a matrix, B, is the

same as the number of linearly independent columns and this number is
called the rank of B. If B is nxn and of rank n it is nonslnRular and

has a unique inverse matrix that we denote by B-2. Also, if B is

nonsingular, the matrices (Bt) -I and (B-I)t exist and are equal and

will be denoted by B"t.

The largest rank possible for an nxm matrix is mln(m,n). A matrix

having this maximal rank is said to be of full-rank. A matrix whose
• rank is less than this maximal rank is called rank-deflclent.

_Jhen it is necessary to distinguish between a row vector and a

column vector, we shall, for example, let x denote a column vector and

x t denote a row vector. For example, if x and y are n-dlmensional

vectors, xty denotes the scalar valued _Dner product and xy t denotes

the n x n matrix valued outer product.

The Euclidean worm of a vector x is denoted by

Uxll-
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The s_p_ectra_ norm of a matrix B is Jenoted by

llBll -Max{ HBxH : ]lx]]- 1 }

_ [Am_(BtB) ]x/2

where A,_(BtB) denotes the largest elgenvalue of BtB.

Two n-vectors, x and y, are mutually 9_Kib_qf_l if x_ - 0. A set

of n-vectors, xI..... xk, are mutually orthogonal if each pair is

mutually orthogonal. A set of n-vectors, xI..... xk, is orthonormal
if the set is orthogonal and each vector has unit euclidean norm.

A square matrix Q is called ortho_ona_ if its transpose is also

its inverse, i.e., QtQ . I, where I denotes the identity matrix. If Q
is orthogonal its row vectors constitute an orthonormal set of vectors
and the same is true for its column vectors.

Multiplication of a vector (respectively matrix) by an orthogonal
matrix preserves its euclidean norm (respectively spectral norm). Thus

if Q is an orthogonal matrix then IIQxH - llxlland I:QBII- IIBII.

• A 2-dimensional orthogonal matrix is either a rotation matrix

Q " Lsin 0 cos

or a reflection matrix

[cos8 sinaiQ - Lsln0 cos

An n-dimenslonal orthogonal matrix, with n Z 2, can be represented as

the product of at most n(n-l)/2 special orthogonal matrices each of

which represents either a rotation or a reflection in the plane defined
by some pair of coordinate axes.

A square matrix A is symmetric if At - A. A symmetric matrix is

Dosltlve deflnlt_ if xtAx > 0 for every n-vector x _ 0 and ZZqD__

defln_te (also called Dosltlve semldeflnlte) if xtAx a 0 for every n-
vector x _ 0. Note that the class of nonnegatlve definite matrices

includes the class of positive definite matrices. A positive definite

matrix is nonsingular, and its inverse matrix is positive definite.

If A is positive definite, the scalar quantity, xtAy, may be
regarded as a Reneralized inner product relative to the matrix, A. The

generalized inner product has analagous properties to the ordinary
inner product, but with some changes of terminology. For example,

whereas x and y are mutually orthogonal if x_ - O, they are mutually

conlu_ate with respect to A if xtAy - O.

Every matrix A of the form A - BiB or A - BtwB, where B is any mxn

matrix and W is nxn nonnegatlve definite, is nonnegatlve definite. If

the column vectors of B are linearly independent and W is positive

definite, then A, given by either of the above two expressions, is

positive definite.

I0
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A partial converse of this is the fact that any n-dimenslonal

symmetric nonnegative definite matrix, A, has a Cholesky fac_orizatlon

of the form, A - Utu, where U is an nxn upper triangular matrix. If A

is positive definite, then U is uniquely determined by A to within the
signs of the rows of U. That is, if U satisfies A - utu, then so does

the matrix V obtained by multiplying any row of U by -I. Thus, if A is

positive definite, we may standardize its upper triangular Cholesky
factor, U, by requiring that its diagonal elements be positive, then U
is uniquely determined by A.

It is sometimes more convenient to focus attention on the left

member of the Cholesky factorization. Thus writing L for Ut we may
write the factorization as A - LLt.

Every symmetric matrix A has an eigensystem factorizatioB of the

form, A - VAV t, where A is an nxn diagonal matrix, and V is an nxn

orthogonal matrix. The diagonal elements of_are the eigenvalues of A
and the column vectors of V are the eigenvect6_$ of A. Note that the

equation satisfied by these matrices can also be written as AV - VA.

The n eigenvalues of a symmetric matrix are uniquely determined by

the matrix. The eigenvalues of a symmetric matrix are all positive if

and only if the matrix is positive definite and are all nonnegative if
and only if the matrix is nonnegative definite.

Every mxn matrix, B, has a singular value decomposition, of the
form, B - USV t, where U is an m)<m orthogonal matrix, V is an n)<n

orthogonal matrix, and S is an mxn matrix that is all zero except for

the diagonal terms, which may be positive or zero. Denoting the

diagonal terms of S by sl, i - I ..... min(m,n), it is often useful to

assume these are ordered so that sI _ sz _ ... The numbers, sl, are
called the singular values of B. The number, say k, of nonzero

singular values is equal to the rank of B. Since BiB - VStSV t, it

follows that the numbers s_, i - i.... , k, are the nonzero eigenvalues
of BiB, and the column vectors of V are the corresponding eigenvectors
of BiB.

The condition _umber of a full-rank matrix is the ratio between

its largest and smallest nonzero singular values. Loosly speaking the

condition number of a matrix is an upper bound on the amount by which

relative errors in a vector will be magnified when the vector is

operated upon by the matrix, either by dire_:t multiplication or by
solving a system. A matrix is called well-conditioned if its condition
number is near one, and ill-condltioned if its condition number is

large. A matrix has the minimal possible condition number of one if

and only if either its rows or columns (or both) are mutually ortho-

normal. Thus a square matrix has a condition number of one if and only

if it is an orthogonal matrix.

Every mxn matrix, B, has a OR factorization, of the form, B - QR,

where Q is an nxn orthogonal matrix and R is an upper triangular mxn
matrix. If m > n and Rank(B) - n, the first n column vectors of Q form

an orthogonal basis for the linear space spanned by the column vectors

, of B, and the matrix R of the QR faotorization of B is also a right
Cholesky factor of the positive definite matrix, BiB, i.e., BiB - RtR.

ii
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The 4eterminant of a triangular matrix, L, denoted by Det(L),is

the product of the diagonal elements of L. The determinant of a

symmetric nxn matrix, A, is the product of the n eigenvalues of A. The

determinant of the identity matrix, or of any other orthogonal matrix,
is I. The determinant of the product of a set of matrices is the

product of the determinants of the matrices. As examples, if A is

positive definite, with the Cholesky factorlzation, A - LLt, then

[Det(A)] I/2 - Det(L)

and if B is a square matrix with QR factorization, B - QR, then

Det(B) - Det(R)

4.2 N-dlmenslonal random variables

An n-dimensional frequency function or probability density

function is a function defined over Rn that is nonnegative and whose

integral over all of Rn exists, and has the value I. Letting x denote
an n-dimensional vector, the mean value of an n-dimensional distribu-

tion having frequency function f is the n-vector _ defined by

- E(x) - I x f(x) dx

where here the integral sign denotes integration over all of R_.

The nxn covarlance matrix of an n-dlmenslonal distribution with

frequency function, f, is defined by

H - Coy(x) - E[(x - _)(x ._)t]

-I (x - _) (x - _)tf(x)ax

From the form of this expression it can be shown that the matrix H is

symmetric, i.e., hlj - hjl for all i and J, and also H is nonnegatlve
definite.

It can be verified that

• Coy(x)- E(xxt) _t

If a new random variable, u, is defined as a linear transformation

of x say, u - Ax, then

E(u) - A E(x)

and - A Coy(x) At

Cov(u)
i

An important special case arises when the function f(x) is the

product of n functions, each depending on Just one component of X, i.e.

' f(x) - f,(x,) .. f,(x,)

12

1989002944-019



i

In such a case we may assume without loss of generality that the

functions, f_, are scaled so that each one is a frequency function.

Then the off-diagonal terms of H are all zero, and each diagonal term,

hll, is Just the one-dimensional variance of the component, x,, determ-
ined by the frequency function fi(xl).

The separate components of x are said to be independently 4is-
tr_buted if and only if all of the off-dlagonal elements of the
covariance matrix are zero.

4.3. Linear estimation of n parameters using m observations

Assume that an m-dlmenslonal phenomenon (this may be a number of
instances of some lower dimensional phenomena) to be observed has a

distribution, D, with a frequency function, f, having an m-dimenslonal

mean vector, 7, and an mxm positive definite covarlance matrix, H.

Assume further that _ is representable as a linear combination of

n m-vectors, bl, i - 1 .... ,n. Thus we are assuming there are coeffic-
ients, _i, such that

Letting B denote the mxn matrix with column vectors bl, and
denote the n-vector with components _i, this equation can be written as

. - B{

To avoid complications that would obscure the central ideas, we

assume that m > n, and the vectors b, are linearly independent. It
follows that B is of rank n.

Various linear estimation problems can be based on this model,
depending on which elements of the model are assumed to be known and

which are to be estimated. Consider first the case in which H and B

are known, and { and _ are unknown. Suppose we have an observation, y,
regarded as a random sample from the distribution, D. We wish to
estimate _ and _ and the covariance matrices of each of these est-
imates.

The Method of presentation used in Sections 4.3.1 through 4.3.
follows pp. 36-48 of [Plackett, 1960].

4.3.1. The estimator _ and its covariance matrix

First note that y itself is a linear unbiased estimator for
since E(y) - _, however we shall see that a better estimator is
available.

Our linear estimator for _ will be

(i) _ - (BtH'IB)'IBtH'Iy. py

13
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Here we have introduced the nxm matrix

, (2) P - (BtH-IB)-IBtH"2

The estimator _ is clearly the unique solution of the linear system

(3) BtH-ZB_ = BtH-ly

which will be discussed further in Sec. 4.3.3.

To verify that _ is an unbiased linear estimator for _ we compute

E[_] - E[Py] - P Ely] - P _ - P B_

- [(BtH-IB)-IBtH-I] B_

= (BtH-IB)-X(BtH-IB){

Note that the property of P that was crucial here was

PB - I

Since B is a rectangular matrix it does not have an inverse, but any

matrix G satisfying GB - I is called a _eft inverse of B. There will

in general be many such matrices and all provide unbiased linear
estimators for _.

The covariance matrix for the estimator, @, may be computed as

Cov(_) - Cov(Py) - P Coy(y) pt _ p H P_

- [(BtH'IB)'XBtH-I] H [H'IB(BtH-IB)-I]

. (BtH-IB)-I (BtH-IB) (BtH-IB)-I

. (BtH-IB)-I

Among unbiased linear estimators, the estimator, Py, has the

m£Dimum varlaDce, in the sense that if Gy is any other unbiased linear

estimator, i.e., G satisfies GB - I, then the difference, Cov(Oy) -

Cov(Py), will be a nonnegatlve definite matrix. To verify this we

write a matrix expression that is nonnegati_e definite due to its form

and then show it is equal to the required difference.
4

(G-P)H(G-p) t - GHG t - GHP t . PHG t + PHP t

- Cov(Gy) - GH[H'*B(BtH'*B)"*]

- [(BtH'IB)'*BtH'I]HGt + Cov(Py)

- Cov(Gy) - Cov(Py) - Cov(Py) + Cov(Py)

14
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- Cov(Gy) Cov(Py)

4.3.2. The estimator _ and its covarlance matrix

Since 7 - B_, we define our estimator for 7 to be

- B_ -,SPy

This estimator is unbiased since

Z[_] - B E[_] - S _ - 7

The covariance matrix for _ is

cov(_) - Cov(B_) - s cov(_) Bt

Since we obtained two different expressions for Cov(_) we may write
either

Cov(_) - B PHP t Bt - BP H (BP)t

• or

Cov(_) - B (BtH-IB)-I Bt

Since P is a left inverse for B, it follows that BP is a left
identity for B, i.e., (BP)B - B. It can be verified that this is the

crucial property that permitted verification that BPy is an unbiased

estimator of 7. Thus if J is any left identity for B, i.e., J is an

m)<n matrix satisfying JB - B, then Jy is an unbiased estimator for 7.

Among all unbiased linear estimators for 7, BPy has the minimum

variance, in the sense that if Jy is any other unbiased linear estimat-

or, i.e., J satisfies JB - B, then the difference, Cov(Jy) Cov(BPy),
is a nonnegatlve definite matrix. This is verified as follows:

(J - BP)H(J - BP) t - J H jt . j H ptBt - BP Hjt + BP H (BP)t

- Coy(J) - J H [H'IB(BtH'IB)"*] Bt

- B [(BtH'_B)'IBtH-*]Hjt + Cov(BP)

- Coy(J) - B (BtH'IB)"I Bt

- B (BtH'IB)"* Bt + Cov(BP)

- Coy(J) - Cov(BP)

4.3.3. Interpretation as least squares estimation

The estimator, _, defined in Eq. 4.3.1.(1), can be derived as the

solution to a certain weighted linearJ_l_&_E problem. This is

the problem of finding an n-vector, x, to minimize the quadretic
function

15
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(1) S2 - (Bx - y)t H-1 (Bx - y)

where B is a given mxn matrix, y is an m-vector of observations, and H
is an mxm positive definite symmetric matrix which is the known

covariance matrix for the distribution of errors in y.

The n-vector of partial derivatives of S2 with respect to x is

(2) aS2/Sx - 2BtH-I(Bx - y)

Setting this equal to zero gives the system of equations

(3) BtH'IBx - BtH-*y

to be solved for x. We shall let _2 denote the minimum value of S2,

i.e., the value of S2 when x - @.

Eq.(3) (see also Eq. 4.3.1.(3)) is called the normal equations for

the least squares problem of minimizing Sz of Eq.(1). Note that when H

- I, the geometric interpretation of setting Eq.(2) equal to zero is

that the residual vector, Bx-y is required to be orthogonal (i.e.,

perpendicular or normal) to all columns of the matrix, B. I presume

this is the reason the word "normal" has been associated with Eq.(3).

When H _ I, Bx-y is required to be conjugate to all columns of B,

relative to the positive definite matrix, H-I.

The use of normal equations in the form BtBx - B_ dates back to

Gauss, 1821. The form treated here, involving H, was introduced by A.
C. Aitken, 1934. Reference: [Plackett].

4.3.3.1. Transformations of the least squares problem

There are two types of transformations that are very useful, both

for the analysis and for the computational solution of a least squares

problem. The first transforms the case of general H to the case of H -

I, while the second decomposes m-space into the n-dimenslonal subspace

spanned by the columns of C, and the complimentary (m-n)-dimensional

subspace orthogonal to the columns of C.

I For the first transformation we factor H as

(i) H - LLt

and introduce C and z defined by

iq (2) C - L'IB

and

(3) z - L'ly

Then Eq. 4.3.3.(1) can be rewritten as

(4) s,- (c. - z)<cx ,) -Ucx - ,11

16
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The statistical interpretation of this transformation is that y,

, which was a sample from a distribution having mean, 7, and covariance
matrix, H, is transformed to z, which is a sample from a distribution

having mean, L-IT, and covariance matrix, I. Thus the components of z
each have unit variance and are mutually uncorrelated.

There are various ways to achieve the factorization, H - LLt. The

simplest is the Cholesky decomposition of H. Another approach would be
to use the eigensystem decomposition, H - VAV t, and then set L - VAI/2.

The goal of the second transformation is to replace C by a matrix
having all of its nonzero elements in its first n rows. It is conven-

ient, but not essential, to choose this transformation so that it also

transforms z to a vector having all of its nonzero components in the
first n+l positions.

One way to construct such a transformation is by use of the QR
decomposition of C,

Q where Q is an mxn orthogonal matrix, R is an nxn nonsingular upper
triangular matrix, and 0 denotes a zero matrix of conformable dimen-

sions, here an (m-n)xn zero matrix. (An alternative to the use of the
QR decomposition for this transformation would be the use of the

singular value decomposition. The SVD is computationally more expen-
sive, but gives additional information that is desirable in some

situations. We shall not discuss the SVD further in this paper.)

Using Eq.(5) in Eq.(4) gives

(6) S2 . IIQ

Let u denote the first n components of Qtz and let v denote the
last m-n components of Qtz, i.e.,

(7) [_] _ Qt z

Then

(8) S2 .

This last expression shows S2 as the sum of two terms, the first

of which can be reduced to zero by the unique x that satisfies Rx- u,
while the second term is independent of x. Thus the mlnlmum value of
S2 is

(9) S'-IIvp

and since the minimizing value of x is unique, and is already known to
be _, it follows that _ satisfies

17
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(I0) R_ - u

From Coy(z) - I, Eq.(7), and the orthogonallty of Q, we obtain

(ii) Cov([_]) -
I

and thus, also

(12) Coy(u) - I

and

(13) Coy(v) - I

From Eq.(9) we obtain

(l&) E(_z) - E(]]vH z) - Z E(_) - Z Var(v_) - m-n

4.3.4. Introducing a scaling factor for H

The assumption that H is completely known a priori is often

unrealistic. A useful weakening of this assumption is the assumption
that the covariance matrix of the distribution, D, from which the

observation was sampled, is 42H, where H is a known positive definite

matrix and 4 is an unknown scalar. This amounts to assuming that the

signs and relative sizes of the elements of the covarlance matrix of D
are known but an overall scale factor is unknown. We shall see that

this factor, 42, can be estimated using the sum of squares of resld-

uals, S2, of Eq. 4.3.3.(1), generalizing the example discussed in Sac.
3.

As to practical methods for the a priori definition of H, a common

situation would be to assume the errors in Uhe different components of

y are uncorrelated so that H need only be a diagonal matrix. Then each

diagonal element of H would be assigned the a priori variance of the

error in the corresponding component of y. In this case one would
expect the value of 4 to turn out to be I, and the extent to which the

a posterlorl estimate of 4 differs from 1 can be a consideration in

assessing the quality of the model relative to the available data.

Another possibility is that one may simply assume that the errors

in the different components of y are uncorrelated and all have the
same, but unknown, variance. Then one could set H - I and the a

• posterlori estimated value of 42 would be an estimate of the variance

of errors for each component of y.

If we start with 4ZH as the covarlance matrix for D and repeat the

derivations of Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.3.1, we find #_

cancels out in the expression for the matrix, P, so the estimator, _,

Q is unchanged. The covariance matrix for _ inherits the factor 4=, so

we obtain

(i) COV(_) --_'(StH'XB)"X

18
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, Similarly the estimator _ is unchanged, but its covariance becomes

(2) Cov(_)- _2_p H (BP)t

or

(3) Cov(_ - 4 2 B (BtH'IB)"I Bt

Eqs.4.3.3.1.(ll-14) become

(4) Coy([UI) - ILvJ

(5) Coy(u) - I

(6) Coy(v) - I

(7) E(_2) - (m.n)4z

4.3.4.1. An unbiased estimator for 4

Eq. 4.3.4.(7) can be rewritten as

(I) E[_2/(m-n)] . 42

showing that _2/(m-n) is an unbiased estimator for 42. We denote this
estimator by

(2) _2 _ _2/(m.n)

This provides a practical estimate for 4 that is needed in situations
such as were described at the beginning of Sec. 4.3.4.

The next question one typically asks is how good is this estimate.
In terms of our mathematical model this translates to the problem of
finding the variance of the estlma_or, _.

A direct derivation of this variance for the case of a general
underlying frequency function, f, would involve third and fourth
moments of f, i.e. integrals of y3f(y) and y*f(y). This would not be
of practical use since independent _stlmates of these moments would not
generally be known. Thus, as was mentioned in Sec. 3, the usual
apFroach is to assume that f is some well known frequency function that
provides a plausible model for the observation errors in the real world

stem being investigated, and for which the resulting distribution foris known.

Standard statistical distributions of interest for our purposes
will be presented in Sec. 5.
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5. Standard distributions

5.1. The normal or Gauss_an distribution

The one-dlmenslonal Do_ma_ distribution, also called the Gausslan

dlstrlbut_on, having mean, 7, and variance, e2, is conventionally

denotea by N(W,o2). Its frequency function is

f(y) - (2x)'I/z o-1 exp{-[(y-_)/o]z/2}

If y has the distribution, N(_,o2), then the random variable

defined by z - (y-_)/o has the distribution, N(O,I). Values of the

frequency function and distribution function for N(O,I) are readily
available in tables and from computer subroutines. Some probabilities

from the distribution, N(0,1), are given in the following table:

Table I. Probabilities for z e N(O,I)

p P(Izl _ p)

05 0

0.52 0.4

• 0.68 0.5

0.84 0.6

1.0 0.683

1.96 0.95

2.0 0.954

3.0 0.997

+_ 1.0

Let _(m:,.Z) denote the m-dlmenslonal normal distribution having

mean vector, 7, and covariance matrix, Z. Here _ is an m-vector and Z

is a positive definite mxm matrlx. The frequency function for this
distribution is

f(y) - (2s)"/2 [Det(Z)]'I/2 exp[-(y-.)tZ-1(y-.)/2]

A very significant property of the normal distribution is the fact
that an affine transformation of a normal random variable will again be

a normal 'variable. Specifically let P be an nxm matrix with n S m and

• Rank(P) - n. Let y E N(m;_,Z). Define a new n-dlmenslonal random var-

lable, z - _ + Py. Then z _ N(n;#+P_,PZPt).

As an important special case of such an afflne transformation, let

Et denote the ixm matrix (i.e. row vector) whose elements are all zero
except for a 1 in column i. The product EtF is Just the component Yt

Q_ of y, and EtZE_ is Just the component oft of Z. It follows that Yt _

N(_t,att). [The notation here is a bit unfortunate. Note that @It la

the variance of Yt and thus _h_ &=_ndard deviation of Yt is ,I/zi_ll a.

An afflne transformation that is often useful is the transforma-

tion from the general case of N(m;w,Z) to the special case of N(m;O,Z).

Denote the Cholesky factorlzatlon of • by Z - LLt. Then if y has the

distribution, N(m;_,Z), the random variable defined by

20
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z - L-1(y-_)

: has the distribution, N(m;0,1).

As an example of the multivariate normal distribution, consider

N(2;0,1), which is also called the circular blvariate normal dist_Ibu-

tlon. The integral of the density function for this distribution over

a disk of radius, p, has a particularly simple expression, namely,

l-exp(-p2/2). Some probabilities from this distribution are given in
the following table:

Table 2. Probabilities for z (N(2;0,1)

p p2 P(llzll2 < pz) _ 1.exp(.pz/2)

0.32 0.10 0.050
1.00 1.00 0.393
1.18 1.39 0.500

2.00 4.00 0.865

2.45 5.99 0.950

3.00 9.00 0.989

• +_ +_ 1.000

5.2. Confidence regions

A region in which a random sample is expected to appear p% of the

time is called a p% confidence region. For example, if z (N(0,1) the
interval [-0.84, 0.84] is a 60% confidence interval for z. There are

infinitely many other 60% confidence regions, however, for example,
[-05, +_], or [-®, 05], or [-®, -0.52]u[0.52, +_].

In higher dimensional spaces there is even more variety in the
shapes and connectedness properties of regions that could be chosen to

be a p% confidence region. For example one could choose a rectangle,

or other polygon, or a circle, or nonconvex or disjoint regions. A
choice having practical appeal for our purposes is the one that can be

characterized as being the region in which the density function exceeds

a certain fixed value. Then the probability density is larger at every
point interior to the region than it is at any point exterior to the
region. In the case of the multivariate normal distribution such

• regions will be ellipsiods. Recall that spheres, ellipses, circles,

and one dimensional intervals are all special cases of ellipsoids.

As we shall see in the immediately following paragraphs, this

choice of the definition of a confidence region provides a significant

technical convenience, in that the case of a general ellipsoid reduces

easily to the case of a sphere, and thence to dependence on a scalar,

rather than an n-dlmenslonal, random variable.

For y (N(m;_,Z), we shall define the p% confidence elliDso_d to

be the unique elllpsold, C, defined by

(i) C - (y : (y-.)tZ'1(y-_) _ p2}

21
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where 9 is the unique nonnegatlve value that permits the integral of
the density function over C to have the value, p/lO0.

Note that the frequency function for the n-dlmenslonal normal

distribution is the product of [Det(Z)] -I/2and a function of (y-

_)tE-1(y-_) with E being positive definite. Any function of this form

has the property that for a fixed dimension, n, its integral over an

ellipsoid C defined as in Eq.(1) depends only on p and not on E or _.

Thus the functional relation between p and p given in Table 2 applies

not only to the circular blvariate normal distribution but also to the

general (elliptical) blvariate normal distribution with IIzll2 in the

table heading replaced by (y-_)tE-1(y-_).

We see that determining critical sizes for confidence ellipses

defined as in Eq.(1) depends on knowledge of the distribution of llzll2,
for zcN(m;0,1). This distribution is called the _ distribution with m

degrees of freedom, and will be discussed in Sec. 5.3.

5 2.1. Geometric characterization of a confidence ellipsoid

Let C be the ellipsoid defined above in terms of W, E, and p.
Write the eigenvalue factorization of Z as Z - QAQ t where Q is ortho-

• gonal and A is diagonal with positive diagonal elements (the eigen-

values of Z), Ai, i - 1 .... , m. We shall assume the eigenvalues are

ordered so that A1 _ Az _ ... _ A,. The column vectors of Q, which we

shall denote by qt, i - 1 ..... m, are the corresponding elgenvectors of
E.

Note that Z-I - QA-IQt, so the eigenvectors of Z"I are the same as

those of Z while the elgenvalues are the reciprocals of those of _.

The ellipsoid, C, is centered at _ and its principal axes are

parallel to the eigenvectors of Z with ql giving the direction of the

major axis. The semi-diameter, at, in the direction of the 14
principal axis can be determined by =olvlng the equation

(a_q,)tz-l(aiqi) _ p2

from which

Consider the case in which Z - o=I. Then the eigenvalues of Z are
all equal to oz, so the confidence ellipsoid is a sphere of radius
a-- pa.

5.3. The _C_ distribution
We have encountered two different situations, Eq. 4.3.3;1.(14) and

Sec. 5.2, in which our analysis led co consideration of the distribu-

tion of the sum of squares of of random variables. If these variables

are independent samples from N(O,1), their sum of squares has a
distribution called the _ distribution.

22
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Eq. 4.3.3.1.(9) showed that _z was the sum of squares of the
components of the (m-n)-vector, v, and it was also established that

E(v) - 0 and Coy(v) - _21. If we now add the assumption that the

distribution of the original random variable, y, is the normal distri-
bution, i.e., y c N(m;w,#2Z), then, since v was obtained as an afflne

transformation of y, the distribution of v is N(n;0,#21).

A random variable defined as the sum of squares of k independent

samples from N(0,1), or equivalently as the sum of squares of com-

ponents of a sample vector from N(k;O,l), is said to have the _ (g__
squared) distribution with k degrees of freedom. We will denote this

distribution by xZ[k].

Letting t denote the independent variable, the density function
for the x2[k] distribution is zero for t < 0 and

t(k/z)-I e-t/2
f(t) - for t Z 0

2k/2 r(k/2)

@ The distribution xa[k] has a mean value of k. The variance is 2k

and thus the standard deviation is (2k):/2. Values of the distribution

function for xZ[k] are available from tables or computer subroutines.

Unlike the normal distribution, the X/ distribution is unsymmet-
ric. The mode and median of the xa[k] distribution are each less than

the mean. If s is a x2[k] variable, the transformed variable,

t - (2s)I/2, has a distribution that is closely approximated by
N((2k-l)I/2,1) for k Z 30.

Table 3. Values of P(s_x) for s E xa[k]
for selected values of k and x.

x - 0.05 0.5 0.95
k

1 0.004 0.46 3.8
2 0.10 1.39 5.99

5 i.I 4.4 ii.i

I0 3.9 9.3 18.3

20 10.9 19.3 31.4

30 18.5 29.3 43.8

Note that the row for k - 2 in this table agrees with values in

• table2 sinceII ll ofTable2 isa variable.

We may now treat the question raised in Sec. 4.3.4 regarding the

dispersion of _2/(m-n) as an estimator for 42. If we assume the data

vector y is a sample from N(m;_,42H), with H known, then _2/4z is a
sample from x_[m-n].

i For example, if m-n - 20, we may conclude that there is a 90%

probability that

10.9 S _2/¢z S 31.4
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and a 5% probability that
_2/@2 _ 31.4

There are various ways one may use these results. If one has a
prior notion of a reasonable value for $, then if _z exceeds 31.4 times

the square of that value, it may be taken as evidence that the model is

not consistent with the data, or the prior value of $ was incorrect.

If one has no prior notion of the value of $, then one might
conclude that there is a 90% probability that $2 satisfies

_2/31.4 _ _2 _ _2/i0.9

5.4. Student's t distribution

In Sec. 4.3.4 the formula Coy(@) - S2(BtH-IB)'Iwas obtained.

Also it has been noted that if y has a normal distribution then @ does
also, in particular

(i) @ _ N(n;f,_2(BtH-IB)-I)

• Thus if B, H, and _ are known, one can compute a p% confidence

ellipsoid for f, or p% confidence intervals for individual components
of f, as discussed in Sec. 5.2.

If _ is not known it can be replaced by its estimator,

(2) _ - [_2/(m-n)]112

(see Eq. 4.3.4.2.(2)), if m-n is sufficiently large so the variance of

is sufficiently small. Alternatively, particularly when m-n is not

large, a different approach may be used, involving the Student's t

distribution. This distribution was presented in 1908 by an anonymous

author identified as "Student". Reference: [Plackett].

Eq.(1) can be rewritten as

(3) _I_ _ N(n;_/_,(BtH'I_)"I)

which serves to focus attention on _/_. We now ask: What is the

distribution of _/_?

Note that _ has a normal distribution and _2 is within a known

factor of being a _ variable. Furthermore these two variables are

statistically independent, since @ is a function of u and not v,

I• [Eq.4.3.3.1.(I0)], _2 is a function of v and not u, [Eq.4.3.3.1.(14)],

and u and v are statistically independent, [Eq.4.3.3.1.(Ii) or

4.3.4. (4)].

Thus we need to know the distribution of the ratio of anormal

variable to the square root of a statistically independent _variable.

That is what the Student's t distribution is.
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Let w_N(n;0,Z) and _2_[k], with these distributions being
mutually independent. Then the n-dlmenslonal vector random variable

(4) t - k_/Zwl_

has the n-dimensional Student's t distribution with k degrees of

freedom and kernel matrix Z. The frequency function for t is

(5) f(t) - r[(k+n)/2)
r(k/2)(k_)nlZ[Det(Z)]llZ[l + ttZ-It](k_)l2

Furthermore,

(6) E(t) - 0

and

(7) Coy(t) - [k/(k-2)]Z

Remark: The frequency function for the 1-dimenslonal Student's t
distribution with Z - i can be found in numerous sources, however I

• wish to thank Dr. J. Myhre for referring _e to [Anderson] where Eqs.(5-

7) above are given in Problem 27, Page 283.

We return now to the study of _/_. To obtain w and _ satisfying
the conditions to define an n-dimensional Student's t variable, let w -

(_-f)/4 and _ - _/4. Then the variable

(8) t - (m-n)I/z(_-_)l_ - (_-_)I_

has the Student's t distributinn with (m-n) degrees of freedom and
kernel matrix Z - (BtH'IB)"I.

As with the density function for the multivariable normal dls-

tribution, the density function for the multlvarlable Student's t
distribution is the product of [Det(Z)] -I/2and a function of ttZ-It,

with Z being positive definite, and thus has the property that for a

fixed dimension, n, and number of degrees of freedom, k, its integral

over an ellipsoid C defined as in Eq. 5.2.(1) depends only on p and not

on Z or _.

Thus to find critical values for confidence ellipses of the form
of Eq. 5.2.(1) for an n-dimenslonal Student's t distribution with k

degrees of freedom, it suffices to know the distribution of the scalar

randomvariable,lltH2 variablelltWnhasadistributionkno as
the F distribution with n and k degrees of freedom.

We shall define the F distribution in Sec. 5.5, then verify the

assertion in the last sentence above, and finally relate the F distri-

bution to the our particular case of t - (_-()/_.

1989002944-032



5.5. The F distribution

If 81 _ _[k,] and 8z e _[k2] then the ratio

O,/kI k281

_,- e2/k _ " k1#2

is said to have the F distribution with kI and k2 degrees of freedom.

This distribution will be denoted by F[kl,k2].

The F distribution was introduced by Fisher, 1922, and incorpor-

ated in a general franework for testing linear hypotheses by
KolodzleJczyk, 1935. Reference: [Plackett]. Values of the distribu-
tion function for the F distribution are available in tables and from

computer subroutines.

Suppose w _ N(n;O,l), 02 e _[kz] , and t - k_/2w/82. Then t is an

n-dimensional Student's t variable with kI degrees of freedom. Also
Ilwllis ax2[n]variable. Let

lltll2 k2llwll
e

n n 8_

Then @ e F[n,kz].

Continuing now our consideration of @/_, it was noted (See

Eq. 5.4.(8)) that (@-{)/_ is an n-dimenslonal Student's t variable with

(m-n) degrees of freedom. It follows therefore that

H@-f_2/(n_ z) e F[n,m-n]. Thus critical points for confidence ellipses
for _ when 4 has been estimated by _ can be obtained from tables for
the F distribution.

6. Approaches to data analysis

6.1. Analysis of one coherent set of data

Assume we have a set of m observed values, y,, i - I .... , m,

which we will treat as an m-dlmenslonal vector. It is assumed that y

can be regarded as being a random sample from the normal distribution,

N(m;_,_2H), where H is a known mxm positive definite matrix and _ is

unknown. We think that the value of _ is I but we will estimate _ from

the data as a check on the validity of the model.

It is assumed that _ has a representation of the form

(1) . - B_

where B is a known mxn matrix of rank n, and ( is an unknown n-_actor.
Our objectives are to estimate (, obtain a covariance matrix for the
estimator of ( as a measure of the dispersion of the estimator, and
estimate ¢ as a measure of the quelity of the model.
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We shall use the two transformations introduced in Sec. 4.3.3.1.

Details of the computational steps specified will be found in [Lawson
and Hanson].

Compute the Cholesky factorlzatlon of H as H - LLt. Then we know

the mlnlmum varlance unbiased linear estimator, _, for ( is the value
of x that solves the least squares problem of

(2> minimizing IIL'IBx- L'lyll2

Compute [C:z] - L'I[B:y] by solving the system L[C:z] - [B:y].
Then our least squares problem is to

(3) minimize IICx - zll2

Compute the "QR" factorlzation of [C:z]. This gives an mxm ortho-
gonal matrix, Q, and an (n+l)x(n+l) upper triangular matrix, U,

satisfying

Partition the matrix U as
e

where R is an nxn nonsingular upper triangular matrix, g is an n-
dimensional column vector, 0 denotes an n-dimensional row vector of

zeros, and _ is a scalar. The transformed least squares problem is now
that of

or equivalently

(7) minimizing llRx - gl[2 + =?

Since R is nonsingular, the first term in thls expression will be

reduced to zero by the unique x that satisfies

(8) Rx - g

and the mlnimum value of the expression being minimized is Just az.

Summarizing these steps, we may write

(9) _2 . minx (Bx.y)tH-1(Bx.y)

- minx [IL'IBx - L'lyll'

-minx -gll+
Q2

' with the minimizing value of x being _ that satisfies
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(IO) - g.

Our unbiased estimate of _ is _. Our unbiased estimate of _2 is

_z , _2/(m.n) " Confidence intervals for _2 are available by use of the
X2 distribution as illustrated in Sec. 5.3.

The covarlance matrix for _ is

(ii) Cov(_) - 42V

where

(12) V - (BtH-IB) -I - (RtR) "I - R'IR -t

6.2. Combining sets of data

The total set of data defining the problem discussed in Sec. 6.1

consists of the vector y, and the matrices, B and H. Suppose two sets

of data, (Yl, BI, Hi) and (Y2, B2 H2), have been acquired that are both

assumed to derive from the same underlying parameter vector, _. Thus,

for i - I, 2, it is assumed that Yl is n noisy observation of Bi_ with

• covariance matrix, 42H i. Furthermore we assume the observations Yl and

Y2 are independent, in the sense that Cov(Yl,y2) - O.

Suppose the processing described in Sec. 6.1 has been applied to

each of these data sets, obtaining estimates, @1 and @z, as well as all
of the intermediate and auxiliary quantities defined in Sec. 6.1.

We wish to consider the question of selecting from among these

intermediate and auxiliary quantities those that will be useful in the

computation of an estimate of ( based on the combined data sets, and

also to specify how these selected quantities are to be used to obtain
such an estimate.

Supplementary quantities deriving from data sets I or 2 will be

indicated by the symbol used in Sec. 6.1 subscripted with 1 or 2,

respectively. Quantities based on combined data will be indicated by

the symbol of Sec. 6.1 with no subscript. Thus we may begin by

defining

(i) B - B

,

(3) H - 0 l

_ " _8

m
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The cumbined problem can be characterized as that of minimizing

i the quantity S2 defined by

(4) S2 - (Bx-y)tH'l(Bx-y)

- (Blx-yl)tH_l(Blx-y,) + (Bzx-y2)tH_l(Bzx-y2)

- -[::}11=+ -
-I1_ - ill_

whe re

• The problem of minimizing S2 is now seen to be a linear least

squares problem involving the matrix _ and the vector _. A reasonable
approach to solving this problem would be via the "QR" decomposition as
in steps 6.1. (3) (8). This "QR" decomposition can be written as

where 0 is a (2n+2)x(2n+2) orthogonal matrix, _ is an nxn nonsingular
upper triangular matrix, _ is an n-vector, 0 denotes an n-dlmenslonal
row vector of zeros, and & is a scalar. We then have

(7) s_- I1_- _11z+ a_

so the the solution vector _ is given as the solution of

I and the minimum value of Si is

(9) _l _ _l

The covarlance matrix of _ is

(lO) cov(_) - _2_

where

(ii) 9 - (RtR)"*- R'iR"t

I Summarizingthe above processwe see that the upper triangular

matrix, U, of Eq.6.1.(5) can be chosed as the quantity to save for each

data set for use in later combining the data sets. The process of

29
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i

combining data sets then amounts to stacking the saved U-matrices

vertically, as in Eq.(5), and then computing the "QR" decomposition of
i this augmented matrix, as in Eq.(6), to obtain the U-matrix for the

combined problem. The combined covarlance matrix can be computed from
the R-submatrix of the U-matrix, as in Eq.(ll).

6.2.1 Additional remarks on combining data sets

An alternative way to approach the minimization of the last

expression in Eq. 6.2.(4) is to note that the minimizing vector _ is
the unique solution of the normal equations

(i) _t_ . _t_

Thus the covariance matrix for _/4 can be expressed as

(2) 9 - (RtR)"I - (R_RI + R_R2)-_ - (V_I + V_I)-I

and _ can be expressed as

(3) _- (RtR)-IRt_

• 9(R_g z + R2g2/

9(R_a_ + a2R2_2)

- (vi_ + v2_)-_(v_*__ + v;_=)

It is at least of mathematically aesthetic interest to note that
Eqs.(2) and (3) can be written as

(4) ¢-_- v__+ v__

and

(5) I+

Eqs.(2) and (3) show that as an alternative to the approach
suggested in Sec. 6.2 of using the U-matrix as the object to be saved

and updated as data sets are combined, one could instead use the (-

vector and the V-matrix. These could then be updated as data sets are

combined using Eqs.(2) and (3).

The use of U gives much better numerical stability and reliability
than the use of V and (.

We assumed at the beginning of Sec. 6.1 that B was of rank n. In

computational practice it is essential to recognize that, even though
the matrix B may be _f rank n, if its column vectors are nearly
linearly dependent, i.e., if it has a large condition number (see Sec.
4.1), its performance in a computational process may be more like a
matrix of lower rank. For this reason it is important to consider what

will happen to a computational procedure i£ B is ill conditioned or has

rank less than n.
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The computation of the QR decomposition of a matrix is well

defined and numerically stable regardless of the rank or condition

number of the matrix being factored. Thus using the U-matrix as the

fundamental object in processing separate data sets and combining them

is a numerically stable process. If the R-submatrlx of the U-matrlx at

some stage is lll-conditloned or rank-deflclent then the quantities

and V computed from the U-matrix at that stage are likely to be poorly
determined or undeterminable. This only affects the ( and V at this

stage, however. If this U-matrlx is later combined with a U-matrlx

derived from another set of observations, it is possible that the R-

submatrix of the new U-matrix will be better conditioned and reasonably
accurate values of @ and V can be determined.

The U-matrlx computed from some particular set of data will be

essentially the same regardless of whether it is computed from all the

data at once or through the combining of U-matrlces previously computed

for disjoint subsets of the data.

In contrast to the stability of the U-matrlx approach, the

approach based on Eqs.(2) and (3) is highly dependent on the order in

which data is grouped. Error in the V-matrlx at any stage will

D propagate to all following stages. The method fails completely if the
V-matrix cannot be determined at some stage due to rank-deflclency of

the underlying B-matrlx, even though after more data is accumulated one

might have a full-rank, and even well-condltloned, underlying B-matrix.

Updating methods based on Eqs.(2) and (3) were given in the early

papers on "filtering" or "Kalman filtering" in the late 50's and early

60's. Instability of the type described here was recognized as a

problem in those days. The QR decomposition was not widely known and

understood in the early 60's, but by the late 60's it was being used in

many algorithms of linear algebra. Its value in "filtering" was

increasingly appreciated in the early 70's. A systematic treatment of

"filtering" emphasizing the use of the U-matrix is given in [Bierman].
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